
Managing User Level Networking-Personal IP networks

Alessandro Pira Enrico Tassi Renzo Davoli
Department of Computer Science

University of Bologna – Italy�
pira,tassi,davoli � @cs.unibo.it

Author responsible for correspondence : Renzo
Davoli, Department of Computer Science, University of
Bologna. Mura Anteo Zamboni, 7. I-40127 Bologna.
Italy. Phone +39 051 2094501, FAX +39 051 2094510,
email renzo@cs.unibo.it.

Abstract

When a user logs in a multi user machine using
User Level Networking-Personal IP he/she get assigned
his/her own IP address or no address at all. In a mul-
tiuser multitasking operating system where several user
are operating at the same time, each user has his/her own
personalized access to the network. In this way the sys-
tem and network administrator can assign access rights,
traffic shaping, routing on a user-by-user basis. In case
of user abuses on the network there is a direct mapping
between the IP address and his/her user id; it is sufficient
to read a single log file. In this paper we discuss also the
problems related to design and manage ULN networks.

1 Introduction

User Level Networking, Personal IP, a.k.a. ULN
[11], has the main purpose of giving the opportunity
of assigning different IP addresses to different users
also when they are working concurrently on the same
multiuser computer.

The original idea of TCP-IP addressing scheme is to map
one-to-one between IP addresses and network interfaces.
This rigid mapping has had many exceptions: e.g. some
net interfaces have several addresses for virtual hosting
or the same IP address is round-robin assigned by the
DNS to several servers for load balancing.

In ULN IP addresses are assigned also to users. A
multiuser machine has its own IP addresses (normally
one for each interface) used by all the machine level
services (e.g. by daemons) and IP addresses assigned to
users (normally one per user). Users cannot access the
machine-level addresses: all the servers (bind), client
(connect), or datagram traffic of a user on the network is
originated at his/her own personal IP address (or at one
of the addresses assigned to that specific user). Each
user has the rights of using only addresses that have
been assigned to him/her through ULN.

The basic idea of ULN consists of giving the user the
opportunity to obtain an IP address through a DHCP-
like process which requires authentication. The assigned
address is added to the addresses of the NIC: with IPv4
[8] a new virtual interface (i.e. like ethX:Y) is created,
while with IPv6 [2] addresses the assigned address is
simply added to the list of IPs of the interface.

A similar approach has been implemented on DHCP
to assign personal IP addresses to single-user personal
computer, e.g. the Framed-IP-Address attribute in Ra-
dius authentication [9] or other DHCP authentication
methods [3, 5]. The purpose is similar but in this latter
case the mapping user-machine is trivially solved by the
structure of the operating system: only one user at a time
can access the computer. Up to our knowledge there are
no other similar projects on multiuser machines.

Some efforts to give differentiated access to the network
can be seen in the linux kernel development. The packet
filtering architecture includes a owner match support op-
tion: it is possible to create iptables access lists to limit
the access to the net using the process owner’s UID as
a parameter. This approach, with respect to ULN, is
hard to manage and the rules are related to each sin-
gle computer. To implement something similar to ULN
there must be an access-list rule per user, per service
and per computer (a total of no. of users times no. ser-
vices times no. computer configuration lines), in case of



policy change the iptables of all the computers must be
changed. ULN address assignment policies are on a sin-
gle server. Different classes of users can be assigned dif-
ferent ranges of IP addresses and then access and routing
policies can be defined on routers once for each different
range.

So, a better control both over user network privileges
and over the opportunity of tracking user actions over
the network can be achieved,too.
The investigation on network abuses on the net is quite
simple by using ULN: there is direct map between the
address and the responsible user on the log of the ULN
address assignment server. Currently the only way to
look for responsabilities on multiusers hosts is to keep
a very detailed log of command execution and port as-
signments. It is clear that a so detailed log creates also
privacy issues.

Here are some examples of what ULN makes possible:

� deny network access to an user;
� assign statically, even in a LAN, the same IP ad-

dress to the same user, no matter which computer
he/she is using, in this case the user can operate on
one computer at a time;

� assign statically, even in a LAN, to each user an IP
address from a set of pre-assigned addresses for that
user no matter which computer he/she is using, in
this case the user can operate on multiple computer
at a time;

� assign dynamically IP addresses to users: each user
get assigned an address for an address space allo-
cated for a class of users sharing the same network
permissions, the mapping user-address is registered
in a log file;

� different IP addresses can be used for virtual host-
ing; currently the only way to give IP level differ-
entiated services on a single computer is the use of
virtual machine: ULN is much lighter in terms of
resource use;

� it’s possible to have a privilege separation of “nor-
mal use” and “network access”, each user can turn
on and off his/her network interface. The user could
also decide between several networking scenarios
among those permitted by the configuration but this
feature has not been implemented yet.

To summarize, ULN is suitable for the network admin-
istrator who needs an authentication mechanism for the
network access.

Current prototype of ULN has been developed under
GNU-Linux, and it is made by both a kernel patch1 and
code which must be executed at user-level.

All multiuser operating systems suffer from the prob-
lems solved by ULN, not only those Linux-Unix based.
Services like remote execution or remote terminal in
Windows NT/2000/XP allow multiple users to operate
concurrently sharing the same network addresses and ac-
cess. ULN can be used also as a security feature for net-
work services daemons. Foreign code gets executed on a
server in many cases: for effect of foreign agents, config-
uration code or marshalling code upload, or simply for
bugs. In other cases local code gets executed under re-
mote inputs, e.g. servlets or in general network services.
Deamons try to limit the effects of the use and misuse
ot that code by using sandboxes or file system cages. If
the deamon runs as a service user (like inn news server
or apache web server do, for example) ULN can be used
as a cage for the network access implemented at kernel
layer.

ULN is a way to prevent anonymous use of local re-
sources but it is not a threat against privacy. Privacy
must be not confused with insecurity. Each user must
have all his/her privacy: it is possible to implement user
privacy preserving protocols [1] over ULN and thus the
user is anonymous on the Internet. On the contrary the
system and network administrator must be able to locate
the user that was using a specific address in case of mis-
use notices. Surprisingly, the use of ULN increases the
level of privacy of users: each address is leased to a sin-
gle user at a time. There is no need of keeping track
of all the activities of each single user to locate which
program originated a specific pattern of traffic. Using
shared IP addresses and this latter method is the only
procedure that can be used to find who was responsible
for a network connection.

Clearly ULN generate the need of a larger address space
of IP addresses. In IPv4 it can be used only by organiza-
tions having large class A or B address spaces or inside
NAT/IP Masquerading domains. When ULN is used in
a NAT/IP Masquerading internal network it loses some
of its pros. For example when the network administra-
tor receives a mail message from a collegue notifying an
abuse it is not possible to map directly the responsabil-
ity using a single local log file because from outside the
network connections appears to be generated at the fire-
wall. This problems are related to the scarcity of IPv4 32

1We originally used the stable tree of the Linux kernel: version
2.4.21; currently a 2.6.3 patch is available through CVS on sourceforge
[11]



bit addresses. Using IPv6 all the problems related to the
addressing space gets obsolete. Our prototype is already
fully IPv6 compliant.

2 Architecture

The purpose of this section is to analyze how ULN
works. The two main components of ULN are the ker-
nel patch and the userspace utility suite, which includes
client and server software.

The mechanism which inhibits the normal use of the net-
work is obviously placed inside the kernel of the client
machine, while the mechanism used to distribute IP ad-
dresses to the users is all made in user space and is com-
posed by a client and server binary.

The userspace utility suite implements the DHCP style
IP request mechanism, that is divided into two main
modules, the remote server and the local client.

While the server, described in 2.2, must be installed only
on one machine, the client must be installed on each
computer the users have access to. We now describe how
the user can ask for an IP address and how the client util-
ity interacts with him.

2.1 uln-client

The only binary the end user must be aware of is uln-
client for IPv4 and uln-client6 for IPv6. We will use only
uln-client in our description, since they work exactly in
the same manner. We’ll refer to a network session as the
interval of time in which a user has the right to access
the network with his personal IP address.

When the user wants to start a network session, he sim-
ply executes uln-client with no parameters, and a new IP
is bound to him. uln-client life follows these steps:

1. contact the server and ask for a new IP address for
the current user

2. inform the kernel that the current user is allowed to
use this IP address

3. put on a virtual NIC like eth0:02 for the new IP ad-

2uln-client6 simply adds the new IP address to an existing NIC,
since a network interface can have more than one IPv6 address as-
signed to it

dress

4. wait until the user hits Ctrl-C

5. inform the server that the user ended his network
session

6. inform the kernel that the user is no more allowed
to use the IP address

7. bring down the virtual NIC 3

Now we will describe how uln-client performs each step.

The first step seems problematic, since the server is re-
mote. In a common network environment the user can
contact a server and ask for a service, but with the new
kernel semantic a user has no chances to open a socket,
since he has no personal IP address to be redirected4 to.
The only user that can still use the real NIC IP address
is root. uln-client is a setuid binary, and uses root’s priv-
ileges in all steps except number four. With root’s priv-
ileges it forks and executes ssh as the child and reads
back from a pipe the personal IP address the child has
negotiated with the server.

To ask the kernel to bind this IP address to the current
user (step two), the client binary executes uln-ifown or
uln-ifown6 with root privileges. The same procedure is
followed in step six.

Step three is simply done calling ifconfig with root priv-
ileges, and the same strategy is adopted for step seven.

Step five is completely made in the server side, since the
server ends a network session when the connection falls.

2.1.1 Configuration file

uln-client has no runtime options, but
reads a configuration file usually placed in
/etc/uln-client/uln-client.conf. The
configuration file has exactly this structure

SERVERNAME = 192.168.1.10
SERVEREXEC = /usr/bin/uln-server
IFACEPREFIX = eth0:
LOCKFILENAME = /var/lock/uln-client.lock

3uln-client6 simply removes the IP address from the real NIC
4Here redirected is used as a source redirection, since the user’s

sockets will be bound to his personal IP address, but the destination of
a connect will not be altered



The first line is the only one the system administrator
must change. It can be a name or an IP address and must
identify the machine on wich uln-server is installed.
SERVEREXEC is the command ssh will execute on the
server machine, and should be left untouched. The name
of the lock file can be altered, but the default setting is
usually good. IFACEPREFIX is tipical of each com-
puter, but most of client machines have only one NIC,
called eth0.

2.1.2 Usage

uln-client takes no parameters, and must be started by
the user who wants to begin a network session. The
user may be prompted to enter his passord on the server
machine. Since ssh supports public key authenticatin
model, you can simply generate a couple of keys and let
ssh do the authentication automatically. To end the net-
work session the user must send a Ctrl-C to uln-client.

2.2 uln-server

The uln-server program has the function of managing
the IP addresses. uln-server, which usually gives to
the client an IPv4 address, can be used with the -6
parameter to get an IPv6 address.

uln-server is executed, through ssh, from uln-client, In
this way, the protocol security is left to ssh. Besides,
uln-server runs with the privileges of the user who, on
the client computer, executes uln-client. But, since uln-
server needs to access the filesystem in a spool directory
(which for security reason should not be accessible by
everybody), the binary executable must be installed se-
tuid, and it runs with the privileges of the special user
uln.

2.2.1 Compile-time options

Some parameters of the server can be configured at com-
pile time. These parameters are:

� the path to the configuration file (described in 2.2.2;
the default value is /etc/uln-server/uln-server.conf

� the path to the shared data file; the default value is
/var/spool/uln/uln-server.shared data

� the log level which will be passed to syslogd; the
default value is LOG LOCAL5;

� the log options which will be used in the syslog()
call; by default, only LOG PID is used, but it’s pos-
sible to have all logs printed also to stderr by speci-
fiyng LOG PID|LOG PERROR.

Those parameters must be specified in the Makefile. Ob-
viously, you’ll have to recompile uln-server to modify
those default values; it’s not possible to do that with just
the uln binary installation.

2.2.2 Configuration file

The run-time options can be specified by modifying the
configuation file.

In the configuration file, the server can find the list
of IP addresses and relative rights. Through this file
the network administrator can configure both the IP
addresses which are available for assignment and the
users who have the necessary rights to access those
addresses.

This is a sample configuration file:

BEGIN
IP4_ADDR = 192.168.1.0/24
USER_DENY = 1-400,badguy

END

BEGIN
IP4_ADDR = 192.168.2.0/255.255.255.0
USER_DENY = 1-400

END

BEGIN
IP6_ADDR = fec0:000a::/64
USER_DENY = ALL
USER_ALLOW = ipv6user

END

Every section is delimited by a BEGIN line and a END
line.

In every section there must be a line which specifies
a list of IPv4 or IPv6 addresses. Those are addresses
which will be available to the clients.



Optionally you can specify also a USER DENY and/or
an USER ALLOW line. Those lines can be used to
specify a list of users which can or cannot access the
IPs specified in the relative section. In both lines the
special token ALL can be specified to indicate all the
users. Besides, more than one user can also be specified
by using numeric values and minus to indicate a user
range (i.e. 1-400 indicates all user IDs from 1 to 400
included), or comma (without space) to separate user
names.

By default, an user is allowed to access an IP address.
This means that all the users which should not get their
IP address should appear USER DENY list (this includes
also “system” user like nobody or daemon).

In brief, an user is allowed if:

� he does not appear in any of these list

or

� he appears in the USER ALLOW list

3 Examples

In this section we will present some scenarios, and solve
the hilighted problems using ULN.

3.1 Computer Science Laboratory

Consider a computer science laboratory where all the
computers are connected together through a local net-
work, and are all visible from the internet, since they
have a public IP adrress. All computers are usualy ac-
cessed both from the outside (a students that works at
home may use an ssh connection to read his mail, check
for news, talk with friends...) and from the inside (each
computer has a keyboard too).

A laboratory like this one may work fine, except when
there is an exam. The teacher, in this case, needs
to prevent students to reach external resources, like a
friend that has already passed the exam and is reachable
trough the internet, and to communicate with each other
through the LAN.

The easiest solution can be cutting out from the net all
the computers by turning off the network hub/switch,
but this may cause some problems, since every computer
may be used by users logged in from the outside.

With ULN is possible to cut out from the network only
the students involved in the exam, and let all the other
users to continue working.

In order to do that, the system administrator should:

� prepare a script that will be executed on the ma-
chine running uln-server just before the exam
starts; this script should send a SIGTERM to all the
instances of uln-server owned by the students who
are scheduled for the exam; this will revoke all the
assigned IP addresses to the students;

� prepare a new uln-server configuration file, which
will be used for the duration of the exam; in this file
the students scheduled for the exam should appear
in every USER DENY list and be deleted from every
USER ALLOW list.

All computers will continue working regularly for all
users, except for the students who are scheduled for the
exam.

3.2 Malicious use of network resources

An university can have thousands of students, and some
of them may abuse of the resources the university gives
to them. Ususally these resources are enough to eas-
ily cause network attacks, for example a Denial of Ser-
vice, and the university must respond of these acts to the
victim. The main problem is to identify the author of
the misuse. Commonly used techniques, like bsd pro-
cess accounting, are usually enough, but with ULN it is
easyer.

If an user commits an abuse from a ULN managed net-
work, the network administrator just needs the IP ad-
dress from which the abuse has been committed and the
time in which the abuse has been committed. The cou-
ple (IP address,time) is enough to find out the misuser,
since in a ULN network there is only one user that owns
an IP at each time.

All the network administrator has to do is to open the
system logs of the computer on which uln-server is in-



stalled, and search for the log line identifying the as-
signment of the IP address, starting from the time of the
abuse and going backward. In the log line are specified
both the username and the computer used to committ the
abuse.

3.3 Free shell accounts

A company or university which wants to provide free
shell accounts has to be very careful about the actions
that users may perform with those accounts. In this
case, denying network access to “free shell” users can
be a good security policy. In this way, users cannot
commit abuse through the network.

ULN can be used to implement that policy. With ULN,
the system administrator can also define two class of
users: “free shell” users, which don’t have access to the
network, and trusted users (like for example the system
administrator himself).

In order to do that, the system administrator should setup
an ULN server on a second computer5, and install ULN
in the computer used for free shell account.

The ULN server must be configured to deny every IP
address to untrusted users, and to grant one to trusted
users.

In this way, the machine providing free shells can be on-
line and reachable, and at the same time untrusted users
cannot use the machine to access the network.

3.4 Service-based traffic shaping

If, for some reason, a network administrator has the need
to limit the network traffic produced by a determinate
service, he/she can use ULN to do that in a more effec-
tive way.

Since now, in all the examples, a user was a real human
being, but you can assing personal IPs to special users
too. For example a system administrator may create a
user ftp, that has a statically bound personal ip address.
This gives the administrator some advantages.

5a different computer should be used for security reasons, but the
uln-server software can also be installed on the “free account” com-
puter

First, traffic shaping policy can be easily implemented
at network level, since each service may have his own
IP address. There is no need of inspecting the network
layer of a packet to make decisions over it. This can be
used both to simplify shaping rules and to improve per-
formances of network filters.
This may help in virtualizing the network too. For ex-
ample there is no easy way of installing more than one
service of the same kind on a single machine. The only
way is to use different ports (like starting two apache
web servers on port 80 and 8080) , but your users must
know this peculiarity to use the service. With ULN a sin-
gle computer may hosts more than one service on their
standard ports with their reserved IP addresses.

3.5 User-level traffic shaping

A network administrator may be asked to implement a
network shaping policy based on users and not services.
Some users may require a fast network network connec-
tion. This may be a good idea to optimize network uti-
lization, discriminating users who really need an internet
connection from users who may be pleased of having it.
A personal IP can be used to implement this kind of pol-
icy using standard shaping softwares. Without ULN you
have to discriminate fast and slow connections judging
just the machine responsible of the conection, while with
ULN the discrimination can be based on users.

3.6 Two (or more) virtual networks

A quite interesting networking scenario can be obtained
with two different uln-server available on the same net-
work (see Fig. 1).

The two server can be hosted on two different machine,
or even on the same one. If the same computer will host
both the server, each one should have its own configura-
tion file, and its shared data file.

Besides, every machine on the LAN should have two
different configuration file for uln-client, so there should
also be two different binaries of uln-client on every
computer. Each one will allow the user to obtain an IP
address from one server.

In this scenario, two different virtual LANs can be con-
figured. Each one can have its own configuration and
can be managed separately.



C

D

A

B

D: user without network rights
C: user connected to both networks
B: user connected to second network
A: user connected to first network

First virtual

Second virtual
network

network

Internet

Mail
server

server
Proxy

Figure 1: Two virtual networks example

The network administrator can grant access to user to
only one network, none, or both.

This can lead for example to a scenario with four class
of users:

� users which don’t have network access rights;

� users which can access only the first-level network,
which provides them a mail server and proxy server
to surf the web; no direct access to computers out-
side of the LAN is possible;

� users which can access the second-level network,
which grants a direct connection to internet, but no
mail or proxy server;

� users which can access both networks: those users
can use the mail and proxy server of the first net-
work, and they can also have a direct connection to
internet through the second network.

4 Security

In this section we want to analyze some architectural as-
pects of ULN that can lead to security risks. Main points
are

� authentication

� denial of service

� local exploits on the client machine

The first security risk is authentication. This process
is completely left to the ssh[10] package, that is a
reliable and usually up to date package in every well
administrated cluster.

A denial of service can be caused by both malicious and
inattenting users. A user may request all available IP ad-
dresses if the server is not well configured. A distracted
user may leave the computer, without killing uln-client.
This can lead to the same denial of service, but a crontab
script called uln-client maintenance6 can automatically
drop unused virtual NICs. uln-client maintenance
checks for user’s scheduled tasks, letting a user leave up
his virtual NIC if he has some batch jobs to run.

As said before uln-client is a setuid binary owned by
root. This is commonly considered a security risk, but
the small size of the code and the impossibility for the
user to directly interact with it should make the sysadmin
sleep all the night long.

5 Conclusions and future developments

The prototype need an extensive testing phase to eval-
uate the usability, the user acceptance and the perfor-
mance. From the first informal tests we are confident
that there will be almost no loose in performace. We
have also to test scalability: the kernel code has never
been tested with hundrends of interfaces. The behavior
of standard configuration commands like ifconfig or ip
can be unsuitable for a so large number of interfaces. A
hierarchical organization of network interfaces (maybe
a virtual filesystem as /dev/if/eth0, /dev/if/uln/bill) could
be useful. Moreover in this way standard file system re-
lated access control methods (chown, chgrp, chmod) can
be used also for network interfaces.

The packaging of ULN for standard distributions is also
a development of our project to make easier the instal-
lation for sysadm. We have already completed the .deb
package for Debian [4].

The IP autoconfiguration can be another option to be in-
cluded in the prototype: the user level IP address could
be computed by a combination of an host-id and the

6the version for IPv6 is called uln-client6 maintenance



user-id. This method is easier to install than a central
address assignment server but however there are several
cons: the user-id or at least a group-id is encoded in the
address and thus is readable from the net (privacy is-
sue), change in user permissions must be operated host
by host or the polocy must be included in a NIS or LDAP
map.

6 Bibliography

References

[1] M. Tortonesi R. Davoli. User untraceability in the
next-generation internet: A proposal. In Proc. of
Communications and Computer Networks (CCN),
pages 177–182. IASTED, November 2002.

[2] S. Deering R. Hinden. Rfc 2460 - internet protocol,
version 6 (ipv6) specification.

[3] T. Komori T. Saito. The secure dhcp system
with user authentication. In Proc. of 27th Annual
IEEE Conference on Local Computer Networks
(LCN’02), pages 123–131, November 2002.

[4] Debian web site. http://www.debian.org/.

[5] II Joseph W. Graham. Authenticating public ac-
cess networking. In Proc. of 30th annual ACM
SIGUCCS fall conference on User services confer-
ence, pages 247–248, 2002.

[6] King enzo ark programs.
http://www.bononia.it/˜renzo/keap/.

[7] Homepage of the linux nis/nis+ projects.
http://www.linux-nis.org/.

[8] Information Sciences Institute University of South-
ern California. Rfc 791 - internet protocol.

[9] Advanced radius user manual: Au-
thentication and authorization.
http://advancedradius.com/on line doc/
Authentication n Authorization.htm.

[10] Openssh. http://openssh.org/.

[11] The uln web site. http://uln.sourceforge.net/.


